

Getting more out of spectrum – applying the dismal science

Brian Williamson

LS telcom Summit, Lichtenau 4th July 2012

Plum Consulting, **London**, brian.williamson@plumconsulting.co.uk, T +44 (0)20 7047 1919, www.plumconsulting.co.uk

Overview

- Economic value
- Spectrum value
- Spectrum demand and supply
- Spectrum allocation
- Conclusion

Economic value ≠ money

Expansion of opportunity

Economic & social value flows from expansion of what we can and want to do

Economic surplus (concept due to Dupuit, civil engineer & economist)

Consumer surplus usually dominates (small producer surplus – not shaded above)

Avoiding double counting and errors of inclusion/omission

- Potential double counting
 - Productivity or GDP gains, since they involve double counting of economic surplus (alternatively count productivity or GDP gains alone)
 - Second round impacts, since these typically involve a redistribution of primary impacts
 - Normal profit, as this represents the opportunity cost of capital

- Errors of inclusion/omission
 - Errors of inclusion
 - Jobs associated with an activity, since unlikely to represent net jobs created in whole economy
 - A transfer of value i.e. payments and taxes
 - Expenditure as a benefit, since it is a cost & is netted off in surplus calculation
 - Errors of omission
 - Non-market values such as the value of leisure time

Spectrum value ≠ economic value

Constraint => spectrum value

Spectrum ↑ spectrum value ↓ economic value ↑

Price **Spectrum** Supply Spectrum Demand <u>_ower spectrum value</u> Quantity

We should not be alarmed if more is paid for spectrum in Europe than elsewhere

Spectrum demand & availability (with mobile broadband focus)

Demand & demand uncertainty

plum

Source: Plum Consulting, Cisco

• Economic way to think: willingness to pay vs. cost

- Willingness to pay will rise
 - Subscriber growth 2 to 3-fold
 - Applications growth & network effects – how much?
 - Fixed substitution (≈ €30 per household towards mobile)
- Unit costs will fall
 - Higher efficiency \approx 5-fold
 - More spectrum ≈ 2-fold
 - Increased network utilisation

Cisco growth extrapolated (+/-) to 2022 appears plausible

• 25 GB per user per month (+1/3)

Availability now out of 625 MHz (plus 380 MHz for Wi-Fi)

Spectrum availability index

Potential availability

Spectrum allocation, re-allocation & shared use

Allocation, re-allocation and sharing plun

Availability, opportunity and transition costs

- Costs of relocation of 95 MHz from 1750-1855 MHz band estimated at US\$18 billion (NTIA, March 2012). US President's Council of Advisors on Science and Technology propose sharing.
- Transition costs may be a particular problem in less developed countries.

Re-allocation mechanisms

- Administrative cost-benefit based decision
- Administrative incentive pricing (requires incremental value estimate)
- Trading, leasing efficient outcome without need for cost benefit estimation (market is informationally efficient)

Sharing

• Where feasible, may maximise overall value and be faster than re-allocation

Balancing competing spectrum uses

- Potential uses A & B
- Maximise total value with equal spectrum values <u>at margin</u> via

plum

- Good decision
- Auction/trade
- Price = marginal value at efficient outcome
- In this case quantity Q_A > Q_B

Give more spectrum to an activity until value of a little more spectrum just equals value in next best use

But it isn't easy

Interference & change of use

- 2.6 GHz mobile broadband sterilised due to London radars receiver interference (Aegis Systems modelling for 67 dB)
- Radar filters proposed
- Harmonisation & band plans to achieve scale & interoperability
- Managed shared use may help
 - New applications
 - · New bands for mobile faster

Conclusion

Bibliography

- 2012. "Inventory and review of spectrum use". Workshops: http://ec.europa.eu/information_society/policy/ecomm/radio_spectrum/get_involved/activities/index_en.htm#past_workshops
- PlumInsight. January 2012. "Mobile data growth too much of a good thing?"
- http://www.plumconsulting.co.uk/pdfs/Plum_Insight_Jan2012_Mobile_data_growth -_too_much_of_a_good_thing.pdf
- August 2009. "Impact assessment framework." A report for the European Communications Office.

http://www.plumconsulting.co.uk/pdfs/Plum_Aug09_Impact_assessment_framework.pdf

• June 2008. "A framework for evaluating the value of next generation broadband." A report for the Broadband Stakeholder Group.